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The inversions of normal reactivity patterns (umpolung) are Tapje 1. Effect of Reaction Conditions on the
powerful strategies in organic synthesis that provide unconventional Thiazolium-Catalyzed Addition of Acylsilane 1a to Chalcone (2a)2
access to important materidlsA prominent class of umpolung Ph

o o
reactions employs organic catalysts (thiazolium salts) to induce j\ /\)Ol\ 1.>S<0r|r\1/%ln/; 4, base m
aldehydes to undergo nucleophilic addition reactibigpically, Ph” D SiMey. Ph7 XX Ph pn @

this aldehyde nucleophile is added either to another aldehyde 1a 2a 2.H0 5
(benzoin condensatichpr to a conjugate acceptor. This second — -

. . . entry base solvent mol% 4 equiv of i-PrOH® yield (%)°
process, or Stetter reaction, is an efficient method to generate useful
1,4-dicarbonyl compounds.However, the Stetter reaction is ; BEU 1T:|E %88 8 Zé
significantly limited by the high reactivity of the aldehyde, which 3 KOF—BU THE 100 0 0
results in large amounts of self-condensation, or benzoin, products. 4 DBU CH,Cl, 100 0 39
We envisioned acylsilanes as unconventional acyl anion precursors 5 DBU PhCH 100 0 0
accessible via the addition of a neutral Lewis base catalyst. This 6 DBU THF 30 0 43
strategy generates an acyl anion nucleophile that adds selectively g BSB $:E 28 1'8 ;g
to the conjugate acceptor over remaining acylsilane, thus completely g DBU THE 10 4.0 44

avoiding benzoin product formation. Herein, we report the realiza-

tion of this new general approach employing acylsilangs (  2All reactions were performed at reflux temperature in the solvent

conjugate acceptorg), and thiazolium salts4] as the nucleophilic ~ indicated.” Equivalents relative to chalconed). ©Isolated yield after
chromatographic purification.

catalyst precursors (eq 1).

; H B0 Table 2. Catalytic Sila-Stetter Reactions with Acylsilane 1la and
o o] R __O ' B-Aryl Unsaturated Phenyl Ketones (2)@
1. cat. 4, DBU o ' ®
1J\ o T «)ﬁ (1) S/gN—Et o o 1.80mol% 4, DBU PP 20 o
R 7SiXg R Y 2. H,0 2 v ! \—={ )I\ /\)J\ -PrOH, THF m
1 2 3 © R CHy PR sive; RN Re T Ry Re ®
14: R = (CHy);0H 1a 2 e 6-15
The use of acy_lsilanéas acyl anion precursors typically involves entry Rl R? yield (o%)° product
the addition of highly charged, potentially toxic catalysts such as
. : . - 1 Ph 4-CIPh 82 6
cyanide and fluoride aniorn’sThese approaches ensure significant 5 Ph 4-OMePh 80 7
charge density on the oxygen of the resulting tetrahedral intermedi- 3 1-Napth Ph 72 8
ate to promote a 1,2-silyl group shift (Brook rearrangement) and 4 4-BrPh Ph 66 9
render the acylsilane carbon nucleophfliddowever, to our g g‘g:gﬂ EE gg 1(1)
knowledge, Brook rearrangements have not been previously induced 7 4:M ePh Ph 84 12
with neutral Lewis basic species, such as carbenes. Specifically, g 3-OMePh Ph 75 13
the use of thiazolium salts in the presence of an appropriate base 9 4-OMePh Ph 77 14
to generate the desired carbene (or zwitterionic) catalyst in situ is 10 4-HOPh Ph 50 15

an appealing, yet uncharted, platform _for the d(.avebpment. of a All reactions were performed at 0.8 M at PC for 12-24 h. See
acy[sﬂanes as tunable acyl anion equivalents with appropriate Supporting Information for detail§.|sola{ted yield after chromatoéraphic
conjugate acceptors. purification. ¢ Based on 70% conversion.
After considerable experimentation with the acyl addition reaction
of acylsilanela and chalcone2a), we identified THF and DBU the a,f-unsaturated system. Additionally, moderate to high yields
as the optimal solvent and base, respectively, in the presence ofare observed for the 1,4-dicarbonyl products when aryl substituents
stoichiometric amounts of commercially availadléTable 1, eq with electron-withdrawing groups are employed (entries-16%
2)2 Initially, the use of thiazolium salts without an alcohol or Notably, the reaction proceeds moderately with an unprotected
catalyst loading below 100 mol % afforded significantly reduced phenol (entry 10).
yields of5 (entry 6)1° and we postulated that the hydroxyl moiety The influence of acylsilane structure on the reaction has also
plays an important role in the reaction. Gratifyingly, straightforward been investigated (Table 3, eq 4). The placement of a substituent
addition of 4 equiv of 2-propanol allows for the reduction of catalyst on the phenyl ring of benzoyltrimethylsilane (entries 2 and 3) or
to 30 mol % without impacting the yield (entry 8). the use of a dimethylphenylsilyl group (entry 4) affords high yields
With the optimal solvent/base combination and alcohol additive, of 1,4-dicarbonyl products. Remarkably, enolizable alkyl acylsilanes
the scope of the reaction was examined (Table 2, eq 3). The reactionsuch asle and 1f are functional acyl anion precursors without a
is tolerant of electron-donating aryl substituents on either side of deleterious effect on conversion or yield (entries 5 and 6).
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Table 3. Influence of Acylsilane Structure on Acyl Anion Scheme 1. Proposed Catalytic Cycle for Thiazolium-Catalyzed
Reaction? Acylsilane Additions to a,3-Unsaturated Ketones
OsiX
o o 130 nc1)ol% 4,DBU R\ O g =\ DBU =\ s Ros|x3
cH -PrOH, THF m — S N— R—> Ar)Y — AT
R‘J\Si/ ot Ph/\)J\Ph Ph pn ) Y J \)
IR 2.H0 1
1 CH, 2a 5,16-19 H Br
4
entry acylsilane Rt R? yield (%)° product (\ Ar R lerOSle
OH 1
1 la Ph Ch 7 5 )
2 1b 4-CIPh Ch 82 16 [DBU H] No reaction
3 1c 4-CHgPh CH 70 17 5'25
g id EhH F'?r? 763 iB the scope of the Stetter reaction by utilizing acylsilanes as tunable
e 3 ; . o )
6 1 cyclohexyl Ph 63 19 acyl anion progenitors. In addition, remarkably mild carbenes have

been employed as new and effective nucleophilic catalysts for 1,2-
a Al reactions were performed at 0.8 M for 12 h at 0. See Supporting silyl (Brook) rearrangements. Further development of this reaction
Information for details® Isolated yield after chromatographic purification.  and studies regarding the reaction mechanism are being pursued

and will be reported in due course.
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